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The electromagnetic autowaves in a weakly conductive 
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Abstract. Propagation of picosecond electromagnetic video pulses along the easy magnetization 
axis of a non-equilibrium weakly conductive ferromagnet locafed in an extemd magnetic field 
parallel to this axis has been studied. For magnetic field components, solutions in the form of 
WO types of autowave dissipative svucture have teen oblained. It is shown that these autowave 
dissipative structures ean be formed under the restrictions on the magnetic anisotropy parameter 
and lhe Zeeman splitting frequency. 

1. Introduction 

Recently it has become possible to generate electromagnetic video pulses, i.e. pulses 
containing one period of oscillation (Auston et d 1984, Fork et al 1987, Darrow et al 
1990). Besides femtosecond pulses (Auston et al 1984, Fork et a1 1987), the so-called 
‘infrared’ video pulses of picosecond duration have been generated (Dmow et al 1990). In 
this connection, the study of the non-resonant interaction of such pulses with matter is of 
considerable interest. In the theoretical papers of Belenov etaf  (1988, 1991, 1992), Belenov 
and Nazarkin (1990), Maimistov and Elyutin (1991). Sazonov (1991, 1992),~Azarenkov er 
al (1991), Sazonov and Yakupova (1992, 1994), Dubrovskaya and Sukhorukov (1992) and 
Sazonov and Trifonov (1994) the propagation of femtosecond light pulses in two-level non- 
resonant media has been studied. The papers of Nakata (1991a-c), Sazonov (1993) and 
Sazonov and Trifonov (1993) were dedicated to the interaction of picosecond video pulses 
in an isotropic dielectric ferromagnet and paramagnet located in an external magnetic field 
Ho. In particular, Nakata. (1991~) enquires into the propagation of a weakly non-linear 
circularly polarized electromagnetic pulse along the magnetic field H , .  At this point, the 
propagation is described by the ‘derivative non-linear Schrodinger (DNLS) equation’ for 
fsansverse components of ferromagnetic magnetization vector M .  It is a matter of common 
knowledge that this equation is integrable by the inverse scattering transform method. 

However, many ferromagnets comprise not only localized magnetic moments but 
conduction electrons. These electrons can interact effectively with a pulsed electric field. 
Absorbing pulse energy, on collision with the atoms of the lattice, electrons inevitably lose 
energy. Therefore, electical resistance and appropriate energy losses take place. 

The present paper is concerned with electromagnetic pulse propagation in a ferromagnet 
subject to electron conductivity. 

In sections 2 and 3 we derive the coupled set of equations (16), (18) and (19) that 
describe the dynamics of the interaction between the magnetization of the ferromagnet and 
the pulsed magnetic field. By this means the set of equations is the ‘jumping:off point’ for 
the main investigation. Two types of approximate solution of these equations as autowave 
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dissipative structures q e  obtained in section 4. It is shown that these autowaves can be 
formed under any restrictions on the magnetic anisotropy parameter and the Zeeman splitting 
frequency. This point is the most significant result of the present paper. The term ‘autowave’ 
is a blanket one in the physics, biology and chemistry of non-equilibrium systems (see e.g. 
Krinsky 1984, Sazonov 1990). A i  autowave propagating in a non-equilibrium medium 
takes the energy accumulated in this medium. The gain process is saturated commonly by 
some dissipative mechanism (e.g. by diffusion) and by non-linearity. Autowave solutions 
are non-integrable non-linear model ones. Autowaves interact in a non-elastic manner with 
similar ones. For example, a collision of two autowaves with amplitudes of opposite signs 
will yield a mutud annihilation. In section 4 we show also that basically the formation 
of the first-type autowave is caused by the spin-wave interaction, whereas the second-type 
autowave can be formed due to anisotropic (spin-spin or spin-orbit) interactions. Thus we 
finally arrive at the conclusion that only the autowave of the second type can be realized 
experimentally in  typical parameters of the medium. 

2.~ Basic model 

Let us direct rhe z axis along the external magnetic field HO and investigate the propagation 
of  an electromagnetic pulse in a ferromagnet along this axis. The Maxwell equations 

4 n .  laE V x H = -3 + -- 
c c at 

will hold. 
Here N and E are respectively the magnetic and electric components of the pulsed 

field, c is the speed of light and j is the elechic current density caused by conduction 
electrons. If the average time of free electron propagation satisfies the condition 7, << r ,  
then Ohm’s law is valid 

j =oE (4) 

where 0 is the electrical conductivity of the ferromagnet. For simplicity, the electron 
conductivity will be considered as a scalar value (i.e. the electrical properties of the 
ferromagnet are considered to be isotropic). Also, we fully ignore the electric medium 
polarization and assume D = E,  where D is the electric induction vector. This 
approximation is justifiable under the condition (Sazonov 1993) 

(5)  

where dj is the dipole moment of the electric dipole transition from the quantum level under 
consideration to one of the nearest quantum levels, and oj is the corresponding transition 
frequency. 

The dynamics of the magnetization vector M is described by the Landau-Lifshitz 
equation (Kosevich et ul 1985): 

(dj . E/hw,lZ << 1 

aM/at = (2B,/h)M x Hefi (6) 
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where the effective magnetic field Her is defined by the relationship: 

H., = -awjaM. 
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(7) 

Here W is the energy functional of the ferromagnet, determined by the following expression 
(Kosevich et al 1985): 

W = [ f ( ~ ( v M ) ’  - ij?M: - ( H  + Ho) . MI d 3 ~  (8) 

where (Y is the exchange interaction constant and j? is the anisotropy constant. In the case 
of an easy-axis-type ferromagnet, j? z 0, whereas j? c 0 in the case of an easy-plane-type 
ferromagnet. 

We assume that the direction of the magnetic field Ho coincides with the direction of 
the easy magnetization axis. 

Let us estimate the terms of (8). By the order of magnitude (Akhiezer et al 1967), 
(Y - kBTKh’jj?;, where kB is the Boltzmann constant, TK is the temperature of the 
ferromagnetic phase transition and h is the distance between the nearest neighbours in 
the crystal. Then 

s 

$ Y ( V M ) ~  - kBTK/hC2T2. 

Substituting here TK - IO’ K, h - IO-* cm and s - IO-’’ s, we have fcr(VM)’ - 
low3 erg C I I - ~ .  For the second term (Akhiezer e ta l  1967) 

fj?M: - ( ~ J c ) ~ ( e ~ / a ~ h ~ )  

where U, is the velocity of an atomic electron, a0 is the Bohr radius and e is the electronic 
charge. Substituting (u,/c)’ - lo-’, we yield that ;j?M: - lo9 erg ~ m - ~ .  

For the last term in (8), we estimate H . M - p0H/h3 .  The value s is defined by 
the Rabi frequency j?oHjh. Consequently, AH - h t - ’ .  Then H .  M - h / ( r h 3 )  - 
io9 erg cm-). 

Thus, the first term (the energy of the exchange interactions) in (8) can be ignored. One 
may show that the inequality orlVMIZ << IH . MI is identical to U,,, (< c. where U,,, is the 
velocity of the free magnons in a ferromagnet. In fact, linearizing (6)-(8), we obtain the 
dispersion.relationship ~ ( k )  for the spin wave: 

’ w = (kBTK/h)hZk2. 

so, 

Summarizing the preceding, from (7) and (8) we have 

Heff = (Ho + BMr)ez + H 

where e, is the unit vector parallel to the z axis. 
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3. The coupled set of non-linear equations: effective transverse pulsed magnetic field 

Suppose that an electromagnetic pulse propagates along the z axis and its dynamics is 
defined by the variables z and t. Then the first equation (3) is easily integrated: 

(10) H, + 4~ Mz = f i  ( t )  
where f i ( t )  is a time function. 

From (I) ,  (2) and (4) we obtain 

( H + 4 x M ) .  (11) 
I a*  XU a 

c2 at2 ~2 at 
V . ( V . H )  - AH = ---(H+4irM) 

Let us write (1 1) as the projection on the z axis; after integrating, we find that 

Hz +4sMZ = f 2 ( ~ )  (12) 

Comparing (10) and (12), we find that f i ( t )  = fz(z) = const. In the absence of the 
where f&) is an arbitrary function of the z coordinate. 

pulse we have that Mz = MO, Mr = My = 0. Then fi = f2 = 4zMo and, therefore, 

HL = 4a(Mo - M z ) .  

a M d a t  = -i(2po/fi)t(Ho + H, + PM,)ML - M, HL1 

aMz/a t  = (2Bo/fi)(HyMx - HMy) = ( W o / f i )  1mWJ.M;) 

(13) 

(14) 

(15) 

After substituting (9) into (6) we find that 

where MI = M, + iMy and HL = Hx + iHy. 
Taking into account expression (13), we can rewrite equation (14) as 

aML/at = -&MA + iWM, (16) 
where & = w ~ ( 1  +A), A = B~BoMo/f io~)  and 

W = 2,!?o&/h E 2po[H~ - ( B  - 4 ~ ) M ~ l / f i .  (17) 
Let us note that in the brackets on the right-hand side of equation (15) we can carry 

out the following replacement: HA + HL - ( p  - 4 s ) M ~  l?~ .  This replacement has 
no effect on the dynamical process, inasmuch as M;ML is real. This is convenient for the 
further consideration in a formal manner. Then instead of (15) we will have: 

aMz/a,lat = Im(9M;). (18) 
The equations (16) and (18) are the Bloch-like set of equations for the magnetization vector 
components. 

From (16)-(18) it follows that the magnetization vector evolves under the effect of 
the transverse component of an effective transverse magnetic field HL. This field is 
the superposition of the transverse component of pulsed magnetic field HL and of the 
magnetization field that is induced by the relative anisotropic interactions, BMA. The 
component 4 s M ~  results from the contribution of the longitudinal pulse component HZ 
(see (13)). 

The transverse projection ( l l ) ,  subject to (17), can be written as an equation for the 
complex function Y: 

The set of equations (16), (U) and (19) describes the magnetization dynamics of a 
ferromagnet and pulsed magnetic field in a self-consistent manner. 
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4. Solutions in the form of autowave dissipative structures 

Executing the following substitution in (16) and (18) 

Y = ilYl exp(ip) MI = Sexp(ip) (20) 

we obtain 

Then, following Belenov et al (1988, 1991). Sazonov (1993) and Sazonov and Trifonov 
(1994). we assume that a pulse is too short if its  duration^ is 

i / r  > h, iapp/ati. (23) 

Under condition (23) a pulse interacts with a ferromagnet, including its very strong 
excitation, if the pulse parameters change rapidly in times w;' .  The condition l / r  >> 
lap/atl makes it clear that the pulse polarization plane rotates far more slowly than the 
electron spin quantum transition, forming the magnetization field of a ferromagnet, occurs. 
Then on the right-hand side of (21) the first term can be ignored. Thereafter the variable 
S, as well as Mz and IYI, become real, and we have the obvious solutions 

Mz = M O C O S ~  (24) 

S=-Mosin0 (25) 

where 

0 = IY(z, t')ldt'. 

Using (16), (20) and (U), we find in the first approximation: 

aMJat = Moexp(ip)(iGosinO - Fcos0). (26) 

Solutions (24)-(26) generalize the corresponding solutions obtained for the case of 
optical pulses of linear polarization (Belenov et a1 1988, 1991, Belenov and Nazarkin 
1990). 

Below we will assume that the pulse velocity is near to the speed of light. Therefore, 
on the right-hand side of equation (19) one can find terms of a higher order of smallness 
than on the left-hand side. This enables one to reduce the derivative order in (19). For 
this purpose we introduce the local time T = t - z/c and the slow coordinate g = p z  
(Lamb 1980). Here p is a small parameter corresponding to the ratio of the right-hand and 
left-hand sides of (19). Then we have 

a i a  a a a  
at ai- az e a ~  +'Z 
a 2  I a2 zp a2 I a2 2 a2 

azz - & a ~ 2  a g a r  cz ai-= c azar' 

- = _ _ _  _ = -  

(27) 
_ N  - - 
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In the last expression (27) we ignored the term proportional to pz. Substituting (27) into 
(19), upon integrating over T, we obtain 

Substituting (20) and (26) into (28) and separating the real part from the imaginary part of 
the equation obtained, we find the following set of equations: 

+--MO &,sine-2c(p-4n)- s m e = O  (29) -+-- ( ""1 az ' 

aze 2 r r ~  as p0 
a z a r  c ar AC 

Further we will cancel the set of non-linear equations (29) and (30). In an initial state 

MO = -2Pon (31) 

let the magnetization vector be directed against the magnetic field 

where n is the concentration of electron spins producing the ferromagnet 
We find the solutions for e(z, T) as a running wave: 

0 = B(T - Z / U )  = O ( t  - Z / U )  

where l / u  = l /c+ l/a, a is a constant and U is the pulse velocity. Besides, we will employ 
the following ansatz: 

B = ( l / r )  sin 0. (32) 
Here the dot above 0 designates the derivative with respect to T - z/a. Substituting (32) 
into (30) we find that 

(33) 

Substituting (33) and (31) into (29), equating the coefficients of sin0 and sin(2e) to 

a'piaz = ( Q / c ) ~ ~ ~ o ; B S  - [ ( k c / a ) ( p  - 4 4  - 17 coso) 
where C2 = Zg;n/X. 

zero after simple algebraic transformation, we find that 

1"'l 2- - - Q { 5 * [ (5) - 4 p ( p  -4n)  
2 

r+ 4nu  4na (34) 
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where 

R* = (~Jc,¶u/c)~T*,. (41) 
Obviously, from (3) it follows that E: = 0. The two other components of the pulsed electric 
field can be found by using ( Z ) ,  (37) and (38). 

Solutions (36)-(41) represent a dissipative autowave of the vector fields H (see figure 1) 
and M .  With regard to M: and Hz the autowave is a running front, whereas with respect to 
HL and MA it is a running pulse. The pulses propagating in a medium of inverted spins take 
the energy accumulated in these spins. The amplification process is saturated by conduction 
electrons depriving a pulse of this energy, irreversibly losing it on collision with a crystal. 
Thus, a dissipative structure (36x41) can be formed. 

Note that in a framework moving with the pulse velocity U we have the polarization 
plane rotation of transverse components of fields H and M .  This rotation is defined by 
the first term on the right-hand side of (40). The characteristic scale length at which the 
rotation angle is equal to 1 rad is determined by the value R:’. 

As 1hl > 0 and 0 = 1’2 = T-’ sin0 > 0 (0 < 0 < n), then we have that 6, > 0. This 
inequality imposes the following restriction on the value of the Zeeman splitting frequency: 

OH = gllBoHo/fi > (16x/W$n. (42) 
Putting n - loz3 

From (34) we obtain that (6H/47m)2 > 4p(,6 - 4x). It is clear that for this structure 
to exist one should meet the condition U < c. As follows from (35) this imposes the 
restriction on the magnetic anisotropy parameter: p > 4x. Summarizing we have the 
following conditions on the parameter ,6: 

(43) 
The conditions (42) Bnd (43) are necessary for an electromagnetic autowave to be 

formed. Thus, a structure of the type (36)<41) can be formed only in an easy-axis 
ferromagnet. Inequality p > 4x can be fulfilled for any ferromagnetic monocrystals, e.g. 
for the cobalt monocrystal (Skrotskii and Knrbatov 1961). 

The dynamic parameters of an autowave (velocity, amplitude, width) are defined by the 
medium parameters and are fully independent of initial conditions. This is understandable as 
the system under study is open and due to dissipation a pulse ‘forgets’ its initial conditions. 

From (37) it follows that the value of longitudinal magnetic field changes irreversibly 
after pulse propagation. At 16rrpon/gll < HO < l6xpon (see (37) and (42)) this field must 
have an opposite direction with regard to the direction of the initial field Ho. 

In further considerations the solution with V+ and r+ will be described as an autowave 
of first type and the solution with V- and t- as an autowave of second type. 

Let ( 6 , / 4 n ~ ) ~  >> 4p(p -437). Then from (34), (35) and (41) we obtain approximately 

we obtain that OH > 5 x 10” s-’. 

4x < ,6 < 2~ + [ 4 d  + ( ~ G H / ~ x u ) ~ ] ” ~ .  

1 / q  (6H/ha)[;2 (44) 

1/5- Y ~ ( ~ X U / ~ H ) @ ( ~  -4H)n (45) 
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F; 
I W j l  

I. 
-. . . -_--- _ _  
\ 

\ 
\ 
\ 
\ 

5 

Figure 1. 
(4~,5’0s2V=r=/c)r =2n NfN = 0.51, +2,. ..). Here 

Instantaneous profiles of the autowave governed by equations (36)-(40) at 

F:y H2y/[4,5’in2(,5’ - 4n)’+ (h/2,%r*)’l”2 

F: = ffz/(8z,%n) tv:y,z = M:y.:l~2fim) 

Full (broken) C W N ~ S  are the profiles of magnetic field (magnetimtion) components. The rotation 
phaseshift between vansverse components of €I and M is equal to tan-’(E/[4p&3 -4z)qJ). 
At other moments of time the components H:. H:. M f  and M$ @ut not H: and M:) 
change their configurations in an accompanying h e w o r k  due to the polarization plane rotation. 
However, indoingso,theareaofthepulselocalization&termined bythescale V*r* isretained. 

~t It - lou ~ m - ~ ,  ,g - IO2, 2x0 - IO8 s-I and 6, - 10” s-I, we have the following 
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values of pulse parameters: Q - 10" s-l, r+ - 10-l~ s, r- - s, R, - cm-' 
and R- - lo-' cm-I. The condition r;] >> la(o/atl is equivalent to the following 
inequality (see (40)): 

2()9 - 4n)Qz* >> 1. (50) 

Substituting these values of the pulse parameters into (50) we conclude that inequality 
(50) is fulfilled only for an autowave of second type, whereas for the pulse of first type 
this condition is not fulfilled. Therefore, in this case only a second-type autowave can be 
realized. Note that parameter R+ decreases with increase of Zeeman splitting frequency OH; 
at the same time parameter R- increases and practically does not depend on the electrical 
conductivity. 

For the first- (second-) type autowave we have: fi/(2)90r+(-$ >> (<<) 2@on($-4ir) (see 
(36)). Therefore, in the formation of the first- (second-) type autowave the non-linearity 
caused by the spin-wave (spin-spin or spin-orbit) interactions has a dominant role. 

5. Concluding remarks 

From (34) and (35) it follows that there are two solutions of (36b(41) type. Probably this 
bistability is determined by the medium parameters and also by the initial conditions. At 
some initial conditions an autowave of first type can be formed; at the same time with other 
initial conditions we can obtain an autowave of second type. A similar situation occurs in 
the case of acoustic video pulses in a paramagnet lattice (Sazonov 1992b). 

The electrical conductivity U can be estimated by using the following expression: 

4nu -@;re 

where OL is the Langmuir frequency for the conduction electrons. One should bear in 
mind that for (6) to be valid the following condition must be met: ze << z*. Having 
z- - lo-'' s, re - s and 4nu - 10' s-', we find that OL - 10" s-'. This value 
of Langmuir frequency corresponds to ne - loi3 CII-~,  where ne is the concentration of 
conduction electrons. This very low electron concentration corresponds to slowly conductive 
ferromagnets. 
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